poj2947 Widget Factory

1
2
3
4
5
6
7
8
9
10
消成对角线的方法就不行了
不是方阵
消成行阶梯形
从now开始以后有系数全为0,但右边不为0的就无解
否则
now<n多解
这题数据挺大的(一般题都是0ms)
高斯约旦法在速度上的差异体现出来了
会慢100ms左右
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#include<iostream>
#include<cstdio>
#include<cstring>
#include<climits>
#include<queue>
#include<bitset>
#define mp make_pair
#define pb push_back
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*f;
}
const int mod=7,N=308,M=308;
int n,m,k;
char s[5],t[5];
int a[M][N];
int cas;
int inv[10];
inline int sol(char *x)
{
if(x[0]=='M') return 1;
if(x[0]=='T'&&x[1]=='U') return 2;
if(x[0]=='W') return 3;
if(x[0]=='T'&&x[1]=='H') return 4;
if(x[0]=='F') return 5;
if(x[0]=='S'&&x[1]=='A') return 6;
if(x[0]=='S'&&x[1]=='U') return 7;
}
inline int gauss()
{
register int i,j,k,t,now=1;
for(j=1;j<=n;++j){
if(a[now][j]==0){
for(i=now+1;i<=m&&a[i][j]==0;++i);
if(i>m) continue;
for(k=j;k<=n+1;++k){
swap(a[i][k],a[now][k]);
}
}
for(i=1;i<=m;++i){
if(i!=now&&a[i][j]){
t=a[i][j]*inv[a[now][j]]%mod;
for(k=j;k<=n+1;++k){
a[i][k]=(a[i][k]-t*a[now][k]%mod+mod)%mod;
}
}
}
++now;
}
for(int i=now;i<=m;++i){
if(a[i][n+1]){
int f=0;
for(int j=i;j<=n;++j){
if(a[i][j]){
f=1;
break;
}
}
if(!f) return -1;//无解
}
}
if(now<n) return 1;//有自由变量,多解
for(int i=1;i<=n;++i){
a[i][n+1]=a[i][n+1]*inv[a[i][i]]%mod;
}
return 0;
}
int main()
{
inv[1]=1;
for(int i=2;i<mod;++i){
inv[i]=mod-mod/i*inv[mod%i]%mod;
}
while(1){
n=read();m=read();
if(n==0&&m==0) return 0;
memset(a,0,sizeof(a));
for(int i=1;i<=m;++i){
k=read();
scanf("%s%s",s,t);
a[i][n+1]=(sol(t)-sol(s)+1+mod)%mod;
while(k--) ++a[i][read()];
for(int j=1;j<=n;++j) a[i][j]%=mod;
}
cas=gauss();
if(cas==-1){
puts("Inconsistent data.");
}
else if(cas==1){
puts("Multiple solutions.");
}
else{
for(int i=1;i<=n;++i){
printf("%d ",a[i][n+1]<3?a[i][n+1]+mod:a[i][n+1]);
}
puts(" ");
}
}
return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#include<iostream>
#include<cstdio>
#include<cstring>
#include<climits>
#include<queue>
#include<bitset>
#define mp make_pair
#define pb push_back
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*f;
}
const int mod=7,N=308,M=308;
int n,m,k;
char s[5],t[5];
int a[M][N];
int cas;
int inv[10];
inline int sol(char *x)
{
if(x[0]=='M') return 1;
if(x[0]=='T'&&x[1]=='U') return 2;
if(x[0]=='W') return 3;
if(x[0]=='T'&&x[1]=='H') return 4;
if(x[0]=='F') return 5;
if(x[0]=='S'&&x[1]=='A') return 6;
if(x[0]=='S'&&x[1]=='U') return 7;
}
inline int gauss()
{
register int i,j,k,t,now=1;
for(j=1;j<=n;++j){
if(a[now][j]==0){
for(i=now+1;i<=m&&a[i][j]==0;++i);
if(i>m) continue;
for(k=j;k<=n+1;++k){
swap(a[i][k],a[now][k]);
}
}
for(i=now+1;i<=m;++i){
if(a[i][j]){
t=a[i][j]*inv[a[now][j]]%mod;
for(k=j;k<=n+1;++k){
a[i][k]=(a[i][k]-t*a[now][k]%mod+mod)%mod;
}
}
}
++now;
}
for(i=now;i<=m;++i){
if(a[i][n+1]){
int f=0;
for(j=i;j<=n;++j){
if(a[i][j]){
f=1;
break;
}
}
if(!f) return -1;//ÎÞ½â
}
}
if(now<n) return 1;//ÓÐ×ÔÓɱäÁ¿£¬¶à½â
for(i=n;i;--i){
for(j=n;j>i;--j){
a[i][n+1]=(a[i][n+1]-a[i][j]*a[j][n+1]%mod+mod)%mod;
}
a[i][n+1]=a[i][n+1]*inv[a[i][i]]%mod;
}
return 0;
}
int main()
{
inv[1]=1;
for(int i=2;i<mod;++i){
inv[i]=mod-mod/i*inv[mod%i]%mod;
}
while(1){
n=read();m=read();
if(n==0&&m==0) return 0;
memset(a,0,sizeof(a));
for(int i=1;i<=m;++i){
k=read();
scanf("%s%s",s,t);
a[i][n+1]=(sol(t)-sol(s)+1+mod)%mod;
while(k--) ++a[i][read()];
for(int j=1;j<=n;++j) a[i][j]%=mod;
}
cas=gauss();
if(cas==-1){
puts("Inconsistent data.");
}
else if(cas==1){
puts("Multiple solutions.");
}
else{
for(int i=1;i<=n;++i){
printf("%d ",a[i][n+1]<3?a[i][n+1]+mod:a[i][n+1]);
}
puts(" ");
}
}
return 0;
}